Skip to main content

LaTeX数学公式大全

本文参考:

  1. 超详细 LaTex数学公式
  2. Katex Function

希腊字母

A\Alpha \AlphaB\Beta \BetaΓ\Gamma \GammaΔ\Delta \Delta
E\Epsilon \EpsilonZ\Zeta \ZetaH\Eta \EtaΘ\Theta \Theta
I\Iota \IotaK\Kappa \KappaΛ\Lambda \LambdaM\Mu \Mu
N\Nu \NuΞ\Xi \XiO\Omicron \OmicronΠ\Pi \Pi
P\Rho \RhoΣ\Sigma \SigmaT\Tau \TauΥ\Upsilon \Upsilon
Φ\Phi \PhiX\Chi \ChiΨ\Psi \PsiΩ\Omega \Omega
Γ\varGamma \varGammaΔ\varDelta \varDeltaΘ\varTheta \varThetaΛ\varLambda \varLambda
Ξ\varXi \varXiΠ\varPi \varPiΣ\varSigma \varSigmaΥ\varUpsilon \varUpsilon
Φ\varPhi \varPhiΨ\varPsi \varPsiΩ\varOmega \varOmega
α\alpha \alphaβ\beta \betaγ\gamma \gammaδ\delta \delta
ϵ\epsilon \epsilonζ\zeta \zetaη\eta \etaθ\theta \theta
ι\iota \iotaκ\kappa \kappaλ\lambda \lambdaμ\mu \mu
ν\nu \nuξ\xi \xiο\omicron \omicronπ\pi \pi
ρ\rho \rhoσ\sigma \sigmaτ\tau \tauυ\upsilon \upsilon
ϕ\phi \phiχ\chi \chiψ\psi \psiω\omega \omega
ε\varepsilon \varepsilonϰ\varkappa \varkappaϑ\vartheta \varthetaϑ\thetasym \thetasym
ϖ\varpi \varpiϱ\varrho \varrhoς\varsigma \varsigmaφ\varphi \varphi
ϝ\digamma \digamma

其他字符

ı\imath \imath\nabla \nabla\Im \ImR\Reals \RealsŒ\text{\OE} \text{\OE}
ȷ\jmath \jmath\partial \partial\image \image\wp \wpø\text{\o} \text{\o}
\aleph \aleph\Game \Gamek\Bbbk \Bbbk\weierp \weierpØ\text{\O} \text{\O}
\alef \alef\Finv \FinvN\N \NZ\Z \Zß\text{\ss} \text{\ss}
\alefsym \alefsymC\cnums \cnumsN\natnums \natnumsa˚\text{\aa} \text{\aa}ı\text{\i} \text{\i}
\beth \bethC\Complex \ComplexR\R \RA˚\text{\AA} \text{\AA}ȷ\text{\j} \text{\j}
\gimel \gimel\ell \ell\Re \Reæ\text{\ae} \text{\ae}
\daleth \daleth\hbar \hbar\real \realÆ\text{\AE} \text{\AE}
ð\eth \eth\hslash \hslashR\reals \realsœ\text{\oe} \text{\oe}

运算符

\sum \sum\prod \prod\bigotimes \bigotimes\bigvee \bigvee
\int \int\coprod \coprod\bigoplus \bigoplus\bigwedge \bigwedge
\iint \iint\intop \intop\bigodot \bigodot\bigcap \bigcap
\iiint \iiint\smallint \smallint\biguplus \biguplus\bigcup \bigcup
\oint \oint\oiint \oiint\oiiint \oiiint\bigsqcup \bigsqcup
ab\frac{a}{b} \frac{a}{b}ab\tfrac{a}{b} \tfrac{a}{b}(aa+1]\genfrac ( ] {2pt}{1}a{a+1} \genfrac ( ] {2pt}{1}a{a+1}
ab{a \over b} {a \over b}ab\dfrac{a}{b} \dfrac{a}{b}ab+1{a \above{2pt} b+1} {a \above{2pt} b+1}
a/ba/b a/ba1+1b\cfrac{a}{1 + \cfrac{1}{b}} \cfrac{a}{1 + \cfrac{1}{b}}
(nk)\binom{n}{k} \binom{n}{k}(nk)\dbinom{n}{k} \dbinom{n}{k}{nk}{n\brace k} {n\brace k}
(nk){n \choose k} {n \choose k}(nk)\tbinom{n}{k} \tbinom{n}{k}[nk]{n\brack k} {n\brack k}
arcsin\arcsin \arcsincosec\cosec \cosecdeg\deg \degsec\sec \sec
arccos\arccos \arccoscosh\cosh \coshdim\dim \dimsin\sin \sin
arctan\arctan \arctancot\cot \cotexp\exp \expsinh\sinh \sinh
arctg\arctg \arctgcotg\cotg \cotghom\hom \homsh\sh \sh
arcctg\arcctg \arcctgcoth\coth \cothker\ker \kertan\tan \tan
arg\arg \argcsc\csc \csclg\lg \lgtanh\tanh \tanh
ch\ch \chctg\ctg \ctgln\ln \lntg\tg \tg
cos\cos \coscth\cth \cthlog\log \logth\th \th
f\operatorname{f} \operatorname{f}
arg max\argmax \argmaxinj lim\injlim \injlimmin\min \minlim\varinjlim \varinjlim
arg min\argmin \argminlim\lim \limplim\plim \plimlim\varliminf \varliminf
det\det \detlim inf\liminf \liminfPr\Pr \Prlim\varlimsup \varlimsup
gcd\gcd \gcdlim sup\limsup \limsupproj lim\projlim \projlimlim\varprojlim \varprojlim
inf\inf \infmax\max \maxsup\sup \sup
f\operatorname*{f} \operatorname*{f}f\operatornamewithlimits{f} \operatornamewithlimits{f}
++ +\cdot \cdot\gtrdot \gtrdotx(moda)x \pmod a x \pmod a
- -\cdotp \cdotp\intercal \intercalx(a)x \pod a x \pod a
// /\centerdot \centerdot\land \land\rhd \rhd
* *\circ \circ\leftthreetimes \leftthreetimes\rightthreetimes \rightthreetimes
⨿\amalg \amalg\circledast \circledast.\ldotp \ldotp\rtimes \rtimes
&\And \And\circledcirc \circledcirc\lor \lor\setminus \setminus
\ast \ast\circleddash \circleddash\lessdot \lessdot\smallsetminus \smallsetminus
\barwedge \barwedge\Cup \Cup\lhd \lhd\sqcap \sqcap
\bigcirc \bigcirc\cup \cup\ltimes \ltimes\sqcup \sqcup
mod\bmod \bmod\curlyvee \curlyveexmodax \mod a x\mod a×\times \times
\boxdot \boxdot\curlywedge \curlywedge\mp \mp\unlhd \unlhd
\boxminus \boxminus÷\div \div\odot \odot\unrhd \unrhd
\boxplus \boxplus\divideontimes \divideontimes\ominus \ominus\uplus \uplus
\boxtimes \boxtimes\dotplus \dotplus\oplus \oplus\vee \vee
\bullet \bullet\doublebarwedge \doublebarwedge\otimes \otimes\veebar \veebar
\Cap \Cap\doublecap \doublecap\oslash \oslash\wedge \wedge
\cap \cap\doublecup \doublecup±\pm \pm or \plusmn\wr \wr
aa' a'a~\tilde{a} \tilde{a}g˚\mathring{g} \mathring{g}
aa'' a''ac~\widetilde{ac} \widetilde{ac}AB\overgroup{AB} \overgroup{AB}
aa^{\prime} a^{\prime}AB~\utilde{AB} \utilde{AB}AB\undergroup{AB} \undergroup{AB}
aˊ\acute{a} \acute{a}F\vec{F} \vec{F}AB\Overrightarrow{AB} \Overrightarrow{AB}
yˉ\bar{y} \bar{y}AB\overleftarrow{AB} \overleftarrow{AB}AB\overrightarrow{AB} \overrightarrow{AB}
a˘\breve{a} \breve{a}AB\underleftarrow{AB} \underleftarrow{AB}AB\underrightarrow{AB} \underrightarrow{AB}
aˇ\check{a} \check{a}ac\overleftharpoon{ac} \overleftharpoon{ac}ac\overrightharpoon{ac} \overrightharpoon{ac}
a˙\dot{a} \dot{a}AB\overleftrightarrow{AB} \overleftrightarrow{AB}AB\overbrace{AB} \overbrace{AB}
a¨\ddot{a} \ddot{a}AB\underleftrightarrow{AB} \underleftrightarrow{AB}AB\underbrace{AB} \underbrace{AB}
aˋ\grave{a} \grave{a}AB\overline{AB} \overline{AB}ABundefined\overlinesegment{AB} \overlinesegment{AB}
θ^\hat{\theta} \hat{\theta}AB\underline{AB} \underline{AB}ABundefined\underlinesegment{AB} \underlinesegment{AB}
ac^\widehat{ac} \widehat{ac}acˇ\widecheck{ac} \widecheck{ac}X\underbar{X} \underbar{X}
aˊ\text{\'{a}} \'{a}a˜\text{\~{a}} \~{a}a˙\text{\.{a}} \.{a}a˝\text{\H{a}} \H{a}
aˋ\text{\`{a}} \`{a}aˉ\text{\={a}} \={a}a¨\text{\"{a}} \"{a}aˇ\text{\v{a}} \v{a}
aˆ\text{\^{a}} \^{a}a˘\text{\u{a}} \u{a}a˚\text{\r{a}} \r{a}
A\Alpha \AlphaB\Beta \BetaΓ\Gamma \GammaΔ\Delta \Delta
E\Epsilon \EpsilonZ\Zeta \ZetaH\Eta \EtaΘ\Theta \Theta
I\Iota \IotaK\Kappa \KappaΛ\Lambda \LambdaM\Mu \Mu
N\Nu \NuΞ\Xi \XiO\Omicron \OmicronΠ\Pi \Pi
P\Rho \RhoΣ\Sigma \SigmaT\Tau \TauΥ\Upsilon \Upsilon
Φ\Phi \PhiX\Chi \ChiΨ\Psi \PsiΩ\Omega \Omega
Γ\varGamma \varGammaΔ\varDelta \varDeltaΘ\varTheta \varThetaΛ\varLambda \varLambda
Ξ\varXi \varXiΠ\varPi \varPiΣ\varSigma \varSigmaΥ\varUpsilon \varUpsilon
Φ\varPhi \varPhiΨ\varPsi \varPsiΩ\varOmega \varOmega
α\alpha \alphaβ\beta \betaγ\gamma \gammaδ\delta \delta
ϵ\epsilon \epsilonζ\zeta \zetaη\eta \etaθ\theta \theta
ι\iota \iotaκ\kappa \kappaλ\lambda \lambdaμ\mu \mu
ν\nu \nuξ\xi \xiο\omicron \omicronπ\pi \pi
ρ\rho \rhoσ\sigma \sigmaτ\tau \tauυ\upsilon \upsilon
ϕ\phi \phiχ\chi \chiψ\psi \psiω\omega \omega
ε\varepsilon \varepsilonϰ\varkappa \varkappaϑ\vartheta \varthetaϑ\thetasym \thetasym
ϖ\varpi \varpiϱ\varrho \varrhoς\varsigma \varsigmaφ\varphi \varphi
ϝ\digamma \digamma
ı\imath \imath\nabla \nabla\Im \ImR\Reals \RealsŒ\text{\OE} \text{\OE}
ȷ\jmath \jmath\partial \partial\image \image\wp \wpø\text{\o} \text{\o}
\aleph \aleph\Game \Gamek\Bbbk \Bbbk\weierp \weierpØ\text{\O} \text{\O}
\alef \alef\Finv \FinvN\N \NZ\Z \Zß\text{\ss} \text{\ss}
\alefsym \alefsymC\cnums \cnumsN\natnums \natnumsa˚\text{\aa} \text{\aa}ı\text{\i} \text{\i}
\beth \bethC\Complex \ComplexR\R \RA˚\text{\AA} \text{\AA}ȷ\text{\j} \text{\j}
\gimel \gimel\ell \ell\Re \Reæ\text{\ae} \text{\ae}
\daleth \daleth\hbar \hbar\real \realÆ\text{\AE} \text{\AE}
ð\eth \eth\hslash \hslashR\reals \realsœ\text{\oe} \text{\oe}

Annotation

5\cancel{5} \cancel{5}a+b+cnote\overbrace{a+b+c}^{\text{note}} \overbrace{a+b+c}^{\text{note}}
5\bcancel{5} \bcancel{5}a+b+cnote\underbrace{a+b+c}_{\text{note}} \underbrace{a+b+c}_{\text{note}}
ABC\xcancel{ABC} \xcancel{ABC}\not = \not =
abc\sout{abc} \sout{abc}π=cd\boxed{\pi=\frac c d} \boxed{\pi=\frac c d}
ana_{\angl n} $a_{\angl n}ana_\angln a_\angln
78\phase{-78^\circ}\phase{-78^\circ}
\forall \forall\complement \complement\therefore \therefore\emptyset \emptyset
\exists \exists\subset \subset\because \because\empty \empty
\exist \exist\supset \supset\mapsto \mapsto\varnothing \varnothing
\nexists \nexists\mid \mid\to \to    \implies \implies
\in \in\land \land\gets \gets    \impliedby \impliedby
\isin \isin\lor \lor\leftrightarrow \leftrightarrow    \iff \iff
\notin \notin\ni \ni\notni \notni¬\neg \neg or \lnot

关系

== =\doteqdot \doteqdot\lessapprox \lessapprox\smile \smile
<< <\eqcirc \eqcirc\lesseqgtr \lesseqgtr\sqsubset \sqsubset
>> >\eqcolon \eqcolon or    \minuscolon\lesseqqgtr \lesseqqgtr\sqsubseteq \sqsubseteq
:: :\Eqcolon \Eqcolon or    \minuscoloncolon\lessgtr \lessgtr\sqsupset \sqsupset
\approx \approx\eqqcolon \eqqcolon or    \equalscolon\lesssim \lesssim\sqsupseteq \sqsupseteq
:\approxcolon \approxcolon=\Eqqcolon \Eqqcolon or   \equalscoloncolon\ll \ll\Subset \Subset
\approxcoloncolon \approxcoloncolon\eqsim \eqsim\lll \lll\subset \subset or \sub
\approxeq \approxeq\eqslantgtr \eqslantgtr\llless \llless\subseteq \subseteq or \sube
\asymp \asymp\eqslantless \eqslantless<\lt \lt\subseteqq \subseteqq
\backepsilon \backepsilon\equiv \equiv\mid \mid\succ \succ
\backsim \backsim\fallingdotseq \fallingdotseq\models \models\succapprox \succapprox
\backsimeq \backsimeq\frown \frown\multimap \multimap\succcurlyeq \succcurlyeq
\between \between\ge \ge\origof \origof\succeq \succeq
\bowtie \bowtie\geq \geq\owns \owns\succsim \succsim
\bumpeq \bumpeq\geqq \geqq\parallel \parallel\Supset \Supset
\Bumpeq \Bumpeq\geqslant \geqslant\perp \perp\supset \supset
\circeq \circeq\gg \gg\pitchfork \pitchfork\supseteq \supseteq or \supe
:\colonapprox \colonapprox\ggg \ggg\prec \prec\supseteqq \supseteqq
\Colonapprox \Colonapprox or    \coloncolonapprox\gggtr \gggtr\precapprox \precapprox\thickapprox \thickapprox
:\coloneq \coloneq or    \colonminus>\gt \gt\preccurlyeq \preccurlyeq\thicksim \thicksim
\Coloneq \Coloneq or    \coloncolonminus\gtrapprox \gtrapprox\preceq \preceq\trianglelefteq \trianglelefteq
\coloneqq \coloneqq or   \colonequals\gtreqless \gtreqless\precsim \precsim\triangleq \triangleq
=\Coloneqq \Coloneqq or   \coloncolonequals\gtreqqless \gtreqqless\propto \propto\trianglerighteq \trianglerighteq
:\colonsim \colonsim\gtrless \gtrless\risingdotseq \risingdotseq\varpropto \varpropto
\Colonsim \Colonsim or    \coloncolonsim\gtrsim \gtrsim\shortmid \shortmid\vartriangle \vartriangle
\cong \cong\imageof \imageof\shortparallel \shortparallel\vartriangleleft \vartriangleleft
\curlyeqprec \curlyeqprec\in \in or \isin\sim \sim\vartriangleright \vartriangleright
\curlyeqsucc \curlyeqsucc\Join \Join:\simcolon \simcolon:\vcentcolon \vcentcolon or   \ratio
\dashv \dashv\le \le\simcoloncolon \simcoloncolon\vdash \vdash
\dblcolon \dblcolon or   \coloncolon\leq \leq\simeq \simeq\vDash \vDash
\doteq \doteq\leqq \leqq\smallfrown \smallfrown\Vdash \Vdash
\Doteq \Doteq\leqslant \leqslant\smallsmile \smallsmile\Vvdash \Vvdash
\gnapprox \gnapprox\ngeqslant \ngeqslant\nsubseteq \nsubseteq\precneqq \precneqq
\gneq \gneq\ngtr \ngtr\nsubseteqq \nsubseteqq\precnsim \precnsim
\gneqq \gneqq\nleq \nleq\nsucc \nsucc\subsetneq \subsetneq
\gnsim \gnsim\nleqq \nleqq\nsucceq \nsucceq\subsetneqq \subsetneqq
\gvertneqq \gvertneqq\nleqslant \nleqslant\nsupseteq \nsupseteq\succnapprox \succnapprox
\lnapprox \lnapprox\nless \nless\nsupseteqq \nsupseteqq\succneqq \succneqq
\lneq \lneq\nmid \nmid\ntriangleleft \ntriangleleft\succnsim \succnsim
\lneqq \lneqq\notin \notin\ntrianglelefteq \ntrianglelefteq\supsetneq \supsetneq
\lnsim \lnsim\notni \notni\ntriangleright \ntriangleright\supsetneqq \supsetneqq
\lvertneqq \lvertneqq\nparallel \nparallel\ntrianglerighteq \ntrianglerighteq\varsubsetneq \varsubsetneq
\ncong \ncong\nprec \nprec\nvdash \nvdash\varsubsetneqq \varsubsetneqq
\ne \ne\npreceq \npreceq\nvDash \nvDash\varsupsetneq \varsupsetneq
\neq \neq\nshortmid \nshortmid\nVDash \nVDash\varsupsetneqq \varsupsetneqq
\ngeq \ngeq\nshortparallel \nshortparallel\nVdash \nVdash
\ngeqq \ngeqq\nsim \nsim\precnapprox \precnapprox

箭头

\circlearrowleft \circlearrowleft\leftharpoonup \leftharpoonup\rArr \rArr
\circlearrowright \circlearrowright\leftleftarrows \leftleftarrows\rarr \rarr
\curvearrowleft \curvearrowleft\leftrightarrow \leftrightarrow\restriction \restriction
\curvearrowright \curvearrowright\Leftrightarrow \Leftrightarrow\rightarrow \rightarrow
\Darr \Darr\leftrightarrows \leftrightarrows\Rightarrow \Rightarrow
\dArr \dArr\leftrightharpoons \leftrightharpoons\rightarrowtail \rightarrowtail
\darr \darr\leftrightsquigarrow \leftrightsquigarrow\rightharpoondown \rightharpoondown
\dashleftarrow \dashleftarrow\Lleftarrow \Lleftarrow\rightharpoonup \rightharpoonup
\dashrightarrow \dashrightarrow\longleftarrow \longleftarrow\rightleftarrows \rightleftarrows
\downarrow \downarrow\Longleftarrow \Longleftarrow\rightleftharpoons \rightleftharpoons
\Downarrow \Downarrow\longleftrightarrow \longleftrightarrow\rightrightarrows \rightrightarrows
\downdownarrows \downdownarrows\Longleftrightarrow \Longleftrightarrow\rightsquigarrow \rightsquigarrow
\downharpoonleft \downharpoonleft\longmapsto \longmapsto\Rrightarrow \Rrightarrow
\downharpoonright \downharpoonright\longrightarrow \longrightarrow\Rsh \Rsh
\gets \gets\Longrightarrow \Longrightarrow\searrow \searrow
\Harr \Harr\looparrowleft \looparrowleft\swarrow \swarrow
\hArr \hArr\looparrowright \looparrowright\to \to
\harr \harr\Lrarr \Lrarr\twoheadleftarrow \twoheadleftarrow
\hookleftarrow \hookleftarrow\lrArr \lrArr\twoheadrightarrow \twoheadrightarrow
\hookrightarrow \hookrightarrow\lrarr \lrarr\Uarr \Uarr
    \iff \iff\Lsh \Lsh\uArr \uArr
    \impliedby \impliedby\mapsto \mapsto\uarr \uarr
    \implies \implies\nearrow \nearrow\uparrow \uparrow
\Larr \Larr\nleftarrow \nleftarrow\Uparrow \Uparrow
\lArr \lArr\nLeftarrow \nLeftarrow\updownarrow \updownarrow
\larr \larr\nleftrightarrow \nleftrightarrow\Updownarrow \Updownarrow
\leadsto \leadsto\nLeftrightarrow \nLeftrightarrow\upharpoonleft \upharpoonleft
\leftarrow \leftarrow\nrightarrow \nrightarrow\upharpoonright \upharpoonright
\Leftarrow \Leftarrow\nRightarrow \nRightarrow\upuparrows \upuparrows
\leftarrowtail \leftarrowtail\nwarrow \nwarrow
\leftharpoondown \leftharpoondown\Rarr \Rarr
abc\xleftarrow{abc} \xleftarrow{abc}underover\xrightarrow[under]{over} \xrightarrow[under]{over}
abc\xLeftarrow{abc} \xLeftarrow{abc}abc\xRightarrow{abc} \xRightarrow{abc}
abc\xleftrightarrow{abc} \xleftrightarrow{abc}abc\xLeftrightarrow{abc} \xLeftrightarrow{abc}
abc\xhookleftarrow{abc} \xhookleftarrow{abc}abc\xhookrightarrow{abc} \xhookrightarrow{abc}
abc\xtwoheadleftarrow{abc} \xtwoheadleftarrow{abc}abc\xtwoheadrightarrow{abc} \xtwoheadrightarrow{abc}
abc\xleftharpoonup{abc} \xleftharpoonup{abc}abc\xrightharpoonup{abc} \xrightharpoonup{abc}
abc\xleftharpoondown{abc} \xleftharpoondown{abc}abc\xrightharpoondown{abc} \xrightharpoondown{abc}
abc\xleftrightharpoons{abc} \xleftrightharpoons{abc}abc\xrightleftharpoons{abc} \xrightleftharpoons{abc}
abc\xtofrom{abc} \xtofrom{abc}abc\xmapsto{abc} \xmapsto{abc}
=abc\xlongequal{abc} \xlongequal{abc}

符号和标点符号

% comment\dots \dotsKaTeX\KaTeX \KaTeX
%\% \%\cdots \cdotsLaTeX\LaTeX \LaTeX
#\# \#\ddots \ddotsTeX\TeX \TeX
&\& \&\ldots \ldots\nabla \nabla
_\_ \_\vdots \vdots\infty \infty
_\text{\textunderscore} \text{\textunderscore}\dotsb \dotsb\infin \infin
\text{--} \text{--}\dotsc \dotsc\checkmark \checkmark
\text{\textendash} \text{\textendash} ⁣\dotsi \dotsi\dag \dag
\text{---} \text{---}\dotsm \dotsm\dagger \dagger
\text{\textemdash} \text{\textemdash}\dotso \dotso\text{\textdagger} \text{\textdagger}
~\text{\textasciitilde} \text{\textasciitilde}\sdot \sdot\ddag \ddag
^\text{\textasciicircum} \text{\textasciicircum}\mathellipsis \mathellipsis\ddagger \ddagger
` `\text{\textellipsis} \text{\textellipsis}\text{\textdaggerdbl} \text{\textdaggerdbl}
\text{\textquoteleft} text{\textquoteleft}\Box \Box\Dagger \Dagger
\lq \lq\square \square\angle \angle
\text{\textquoteright} \text{\textquoteright}\blacksquare \blacksquare\measuredangle \measuredangle
\rq \rq\triangle \triangle\sphericalangle \sphericalangle
\text{\textquotedblleft} \text{\textquotedblleft}\triangledown \triangledown\top \top
"" "\triangleleft \triangleleft\bot \bot
\text{\textquotedblright} \text{\textquotedblright}\triangleright \triangleright$\$ \$
 ⁣:\colon \colon\bigtriangledown \bigtriangledown$\text{\textdollar} \text{\textdollar}
\backprime \backprime\bigtriangleup \bigtriangleup£\pounds \pounds
\prime \prime\blacktriangle \blacktriangle£\mathsterling \mathsterling
<\text{\textless} \text{\textless}\blacktriangledown \blacktriangledown£\text{\textsterling} \text{\textsterling}
>\text{\textgreater} \text{\textgreater}\blacktriangleleft \blacktriangleleft¥\yen \yen
|\text{\textbar} \text{\textbar}\blacktriangleright \blacktriangleright\surd \surd
\text{\textbardbl} \text{\textbardbl}\diamond \diamond°\degree \degree
{\text{\textbraceleft} \text{\textbraceleft}\Diamond \Diamond°\text{\textdegree} \text{\textdegree}
}\text{\textbraceright} \text{\textbraceright}\lozenge \lozenge\mho \mho
\\text{\textbackslash} \text{\textbackslash}\blacklozenge \blacklozenge\diagdown \diagdown
\text{\P} \text{\P} or \P\star \star\diagup \diagup
§\text{\S} \text{\S} or \S\bigstar \bigstar\flat \flat
§\text{\sect} \text{\sect}\clubsuit \clubsuit\natural \natural
©\copyright \copyright\clubs \clubs\sharp \sharp
®\circledR \circledR\diamondsuit \diamondsuit\heartsuit \heartsuit
®\text{\textregistered} \text{\textregistered}\diamonds \diamonds\hearts \hearts
\circledS \circledS\spadesuit \spadesuit\spades \spades
a\text{\textcircled a} \text{\textcircled a}\maltese \maltese\minuso \minuso

字体

LaTeX代码效果LaTeX代码效果
\mathbb{A-Z}AZ\mathbb{A-Z}\mathit{A-Z,a-z,0-9}AZ,az,09\mathit{A-Z,a-z,0-9}
\mathbf{A-Z,a-z,0-9}AZ,az\mathbf{A-Z,a-z}\pmb{A-Z,a-z,0-9AZ,az,09\pmb{A-Z,a-z,0-9}
\mathtt{A-Z,a-z,0-9}AZ,az,09\mathtt{A-Z,a-z,0-9}\mathrm{A-Z,a-z,0-9}AZ,az,09\mathrm{A-Z,a-z,0-9}
\mathsf{A-Z,a-z,0-9}AZ,az,09\mathsf{A-Z,a-z,0-9}\mathcal{A-Z,a-z,0-9}AZ,az,09\mathcal{A-Z,a-z,0-9}
\mathscr{A-Z,a-z}AZ\mathscr{A-Z}\mathfrak{A-Z,a-z,0-9}AZ,az,09\mathfrak{A-Z,a-z,0-9}

上下标

aba^b
a^b 
aca_c
a_c
acba^b_c
a^b_c
a2112a^{12}_{21}
a^{12}_{21}

分式和根式

3/83/8
3/8 
38\frac{3}{8}
\frac{3}{8}
38\tfrac{3}{8}
\tfrac{3}{8}
xx1/2\sqrt{x} \Leftrightarrow x^{1/2}
\sqrt{x} \Leftrightarrow x^{1/2}
23\sqrt[3]{2}
\sqrt[3]{2}
x2+y\sqrt{x^{2} + \sqrt{y}}
\sqrt{x^{2} + \sqrt{y}}

求和

i=1nxi\sum_{i=1}^n x_i
\sum_{i=1}^n x_i

连乘

i=0nxi\prod_{i=0}^{n}x_i
\prod_{i=0}^{n}x_i

极限

如果是行间公式,则如下:

limxf(x)\lim_{x \to \infty} f(x)
\lim_{x \to \infty} f(x)

如果是行内公式,则如下:

limxf(x)\lim\limits_{x \to \infty} f(x)
\lim\limits_{x \to \infty} f(x)

其他案例:

ex=limn(1+xn)ne^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n
e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n

导数

dydx\frac{\mathrm{d} y }{\mathrm{d} x}
\frac{\mathrm{d} y }{\mathrm{d} x}
dnydxn\frac{\mathrm{d}^{n} y }{\mathrm{d} x^{n}}
\frac{\mathrm{d}^{n} y }{\mathrm{d} x^{n}}
ddxy2\frac{\mathrm{d} }{\mathrm{d} x} y^2
\frac{\mathrm{d} }{\mathrm{d} x} y^2
yx\frac{ y^{'} }{ x^{'} }
\frac{ y^{'} }{ x^{'} }

偏导数

fx\frac{\partial f}{\partial x}
\frac{\partial f}{\partial x}
nfxn\frac{\partial ^{n} f}{\partial x^{n}}
\frac{\partial ^{n} f}{\partial x^{n}}

积分

abf(x)dx\int_a^b f(x)\mathrm{d}x
\int_a^b f(x)\mathrm{d}x 
f(x)g(y)dxdy\int\int f(x)g(y) \mathrm{d}x\mathrm{d}y
\int\int f(x)g(y) \mathrm{d}x\mathrm{d}y
0π22θdθ\oint_0^{\frac{\pi}{2}}2\theta\mathrm{d}\theta
\oint_0^{\frac{\pi}{2}}2\theta\mathrm{d}\theta

括号

LaTex表达式中的 ( ) 、 [ ] 均可以正常使用,但是对于 { } 需要使用转义字符使用,即使用 “{” 和 “}” 表示 { }

LaTeX代码效果
\left( \cdots \right)()\left( \cdots \right)
\vert \cdots \vert\vert \cdots \vert
\Vert \cdots \Vert\Vert \cdots \Vert
\langle \cdots \rangle\langle \cdots \rangle
\Biggl(\biggl(\Bigl(\bigl((\cdots)\bigr)\Bigr)\biggr)\Biggr)((((()))))\Biggl(\biggl(\Bigl(\bigl((\cdots)\bigr)\Bigr)\biggr)\Biggr)
f([1+{x,y}(xy+yx)(u+1)+a]3/2)f\left( \left[ \frac{ 1+\left\{x,y\right\} }{ \left( \frac{x}{y}+\frac{y}{x} \right) \left(u+1\right) }+a \right]^{3/2} \right)
f\left(
\left[
\frac{
1+\left\{x,y\right\}
}{
\left(
\frac{x}{y}+\frac{y}{x}
\right)
\left(u+1\right)
}+a
\right]^{3/2}
\right)

对齐方程

37=7321122=7321227321732=7321227321732=7312117327312(112732)\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align}
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
f(x)=(x3)+(x3+x2+x1)+(x3+x2)f(x)=(3x2+2x+1)+(3x2+2x)f(x)=(6x+2)\begin{align} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\ f'(x)&=\left(3x^2+2x+1\right)+\left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{align}
\begin{align} 
f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\
f'(x)&=\left(3x^2+2x+1\right)+\left(3x^2+2x\right)\\
f''(x)&=\left(6x+2\right)\\
\end{align}
f(x)=(x3)+(x3+x2+x1)+(x3+x2)f(x)=(3x2+2x+1)+(3x2+2x)f(x)=(6x+2)\begin{equation} \begin{aligned} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\ f'(x)&=\left(3x^2+2x+1\right)+\left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{aligned} \end{equation}
\begin{equation}
\begin{aligned}
f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^‌​2\right)\\
f'(x)&=\left(3x^2+2x+1\right)+\left(3x^2+2x\right)\\
f''(x)&=\left(6x+2\right)\\
\end{aligned}
\end{equation}

矩阵

abcd\begin{matrix} a & b \\ c & d \end{matrix}
\begin{matrix}
a & b \\
c & d
\end{matrix}
(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
[abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
abcd\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
abcd\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}
\begin{Vmatrix}
a & b \\
c & d
\end{Vmatrix}
{abcd}\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}
\begin{Bmatrix}
a & b \\
c & d
\end{Bmatrix}
(1a1a12a1n1a2a22a2n1amam2amn)\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots& \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{pmatrix}
\begin{pmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots& \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{pmatrix}

分段函数

f(n)={n/2,if n is even3n+1,if n is oddf(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases}
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
if n is even:n/2if n is odd:3n+1}=f(n)\left. \begin{array}{l} \text{if $n$ is even:}&n/2\\ \text{if $n$ is odd:}&3n+1 \end{array} \right\} =f(n)
\left.
\begin{array}{l}
\text{if $n$ is even:}&n/2\\
\text{if $n$ is odd:}&3n+1
\end{array}
\right\}
=f(n)
f(n)={n2,if n is even3n+1,if n is oddf(n) = \begin{cases} \frac{n}{2}, & \text{if $n$ is even} \\[2ex] 3n+1, & \text{if $n$ is odd} \end{cases}
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\[2ex]
3n+1, & \text{if $n$ is odd}
\end{cases}

方程组

{a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right.
\left\{ 
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
{a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3\begin{cases} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{cases}
\begin{cases}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{cases}
{a1x+b1y+c1z=d1+e1a2x+b2y=d2a3x+b3y+c3z=d3\left\{ \begin{aligned} a_1x+b_1y+c_1z &=d_1+e_1 \\ a_2x+b_2y&=d_2 \\ a_3x+b_3y+c_3z &=d_3 \end{aligned} \right.
\left\{
\begin{aligned}
a_1x+b_1y+c_1z &=d_1+e_1 \\
a_2x+b_2y&=d_2 \\
a_3x+b_3y+c_3z &=d_3
\end{aligned}
\right.
{a1x+b1y+c1z=p1q1a2x+b2y+c2z=p2q2a3x+b3y+c3z=p3q3\begin{cases} a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\[2ex] a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\[2ex] a_3x+b_3y+c_3z=\frac{p_3}{q_3} \end{cases}
\begin{cases}
a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\[2ex]
a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\[2ex]
a_3x+b_3y+c_3z=\frac{p_3}{q_3}
\end{cases}
{a1x+b1y+c1z=p1q1a2x+b2y+c2z=p2q2a3x+b3y+c3z=p3q3\begin{cases} a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\ a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\ a_3x+b_3y+c_3z=\frac{p_3}{q_3} \end{cases}
\begin{cases}
a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\
a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\
a_3x+b_3y+c_3z=\frac{p_3}{q_3}
\end{cases}